Contenido Overview
- básicos
- Sobre las formas
- Índice
- Manipulación de formas
- Más sobre DTypes
- Transmisión
- tf.convert_to a tensor
- Tensores Tensores
- Tensores de string
- Tensores de ahorro
Tensores son arreglos multidimensionales con un tipo uniforme (llamadodtype
Puedes ver todos los apoyadosdtypes
entf.dtypes
.
Si usted está familiarizado conNúmeroLos tensores son comonp.arrays
.
Todos los tensores son inmutables como números y cadenas de Python: nunca se puede actualizar el contenido de un tensor, solo se puede crear un nuevo.
import tensorflow as tf
import numpy as np
2024-08-15 03:05:18.327501: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
2024-08-15 03:05:18.348450: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
2024-08-15 03:05:18.354825: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
básicos
Primero, crear algunos tensores básicos.
Aquí está un tensor "escalar" o "rank-0".Un escalar contiene un único valor, y no hay "ejes".
# This will be an int32 tensor by default; see "dtypes" below.
rank_0_tensor = tf.constant(4)
print(rank_0_tensor)
tf.Tensor(4, shape=(), dtype=int32)
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1723691120.932442 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691120.936343 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691120.940040 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691120.943264 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691120.954872 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691120.958376 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691120.961894 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691120.964843 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691120.967730 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691120.971300 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691120.974711 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691120.977717 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.208679 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.210786 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.212791 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.214776 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.216798 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.218734 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.220650 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.222554 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.224486 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.226429 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.228329 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.230251 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.269036 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.271069 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.273006 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.274956 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.276917 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.278854 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.280754 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.282664 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.284613 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.287058 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.289508 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
I0000 00:00:1723691122.291891 176945 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355
Un tensor "vector" o "rank-1" es como una lista de valores.
# Let's make this a float tensor.
rank_1_tensor = tf.constant([2.0, 3.0, 4.0])
print(rank_1_tensor)
tf.Tensor([2. 3. 4.], shape=(3,), dtype=float32)
A "matrix" or "rank-2" tensor has two axes:
# If you want to be specific, you can set the dtype (see below) at creation time
rank_2_tensor = tf.constant([[1, 2],
[3, 4],
[5, 6]], dtype=tf.float16)
print(rank_2_tensor)
tf.Tensor(
[[1. 2.]
[3. 4.]
[5. 6.]], shape=(3, 2), dtype=float16)
A scalar, shape: |
A vector, shape: |
A matrix, shape: |
---|---|---|
|
|
|
Tensors may have more axes; here is a tensor with three axes:
# There can be an arbitrary number of
# axes (sometimes called "dimensions")
rank_3_tensor = tf.constant([
[[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]],
[[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]],
[[20, 21, 22, 23, 24],
[25, 26, 27, 28, 29]],])
print(rank_3_tensor)
tf.Tensor(
[[[ 0 1 2 3 4]
[ 5 6 7 8 9]]
[[10 11 12 13 14]
[15 16 17 18 19]]
[[20 21 22 23 24]
[25 26 27 28 29]]], shape=(3, 2, 5), dtype=int32)
Hay muchas maneras de visualizar un tensor con más de dos ejes.
A 3-axis tensor, shape: |
|
|
---|---|---|
|
|
|
Puede convertir un tensor a una matriz NumPy usandonp.array
O eltensor.numpy
El método:
np.array(rank_2_tensor)
array([[1., 2.],
[3., 4.],
[5., 6.]], dtype=float16)
rank_2_tensor.numpy()
array([[1., 2.],
[3., 4.],
[5., 6.]], dtype=float16)
Los sensores a menudo contienen flotadores e incs, pero tienen muchos otros tipos, incluyendo:
- Números complejos
- Strings
La basetf.Tensor
La clase requiere que los tensores sean "rectangulares"---es decir, a lo largo de cada eje, cada elemento es del mismo tamaño.
- Tensores Tensores
- Tensores de ahorro
Puede hacer matemáticas básicas en tensores, incluyendo la suma, la multiplicación en forma de elementos y la multiplicación de matriz.
a = tf.constant([[1, 2],
[3, 4]])
b = tf.constant([[1, 1],
[1, 1]]) # Could have also said `tf.ones([2,2], dtype=tf.int32)`
print(tf.add(a, b), "\n")
print(tf.multiply(a, b), "\n")
print(tf.matmul(a, b), "\n")
tf.Tensor(
[[2 3]
[4 5]], shape=(2, 2), dtype=int32)
tf.Tensor(
[[1 2]
[3 4]], shape=(2, 2), dtype=int32)
tf.Tensor(
[[3 3]
[7 7]], shape=(2, 2), dtype=int32)
print(a + b, "\n") # element-wise addition
print(a * b, "\n") # element-wise multiplication
print(a @ b, "\n") # matrix multiplication
tf.Tensor(
[[2 3]
[4 5]], shape=(2, 2), dtype=int32)
tf.Tensor(
[[1 2]
[3 4]], shape=(2, 2), dtype=int32)
tf.Tensor(
[[3 3]
[7 7]], shape=(2, 2), dtype=int32)
Los sensores se utilizan en todo tipo de operaciones (o "Ops").
c = tf.constant([[4.0, 5.0], [10.0, 1.0]])
# Find the largest value
print(tf.reduce_max(c))
# Find the index of the largest value
print(tf.math.argmax(c))
# Compute the softmax
print(tf.nn.softmax(c))
tf.Tensor(10.0, shape=(), dtype=float32)
tf.Tensor([1 0], shape=(2,), dtype=int64)
tf.Tensor(
[[2.6894143e-01 7.3105854e-01]
[9.9987662e-01 1.2339458e-04]], shape=(2, 2), dtype=float32)
Nota: Por lo general, donde una función TensorFlow espera un Tensor como entrada, la función también aceptará cualquier cosa que pueda ser convertida a un Tensor usando tf.convert_to_tensor.
Nota: Por lo general, donde una función TensorFlow espera un Tensor como entrada, la función también aceptará cualquier cosa que pueda ser convertida a un Tensor usando tf.convert_to_tensor.
tf.convert_to_tensor([1,2,3])
<tf.Tensor: shape=(3,), dtype=int32, numpy=array([1, 2, 3], dtype=int32)>
tf.reduce_max([1,2,3])
<tf.Tensor: shape=(), dtype=int32, numpy=3>
tf.reduce_max(np.array([1,2,3]))
<tf.Tensor: shape=(), dtype=int64, numpy=3>
Sobre las formas
Tensores tienen formas. Algunos vocabulario:
- Forma: La longitud (número de elementos) de cada uno de los ejes de un tensor.
- Rango: Número de ejes tensores.Un escalar tiene rango 0, un vector tiene rango 1, una matriz es rango 2.
- Eje o Dimensión: Una dimensión particular de un tensor.
- Tamaño: El número total de elementos en el tensor, el producto de los elementos del vector de forma.
Nota: Aunque puede ver la referencia a un "tensor de dos dimensiones", un tensor de rango 2 no suele describir un espacio 2D.
Note:Aunque se puede ver la referencia a un "tensor de dos dimensiones", un tensor de rango 2 no suele describir un espacio 2D.
Tensores ytf.TensorShape
Los objetos tienen propiedades convenientes para acceder a estos:
rank_4_tensor = tf.zeros([3, 2, 4, 5])
|
A rank-4 tensor, shape: |
---|---|
|
|
print("Type of every element:", rank_4_tensor.dtype)
print("Number of axes:", rank_4_tensor.ndim)
print("Shape of tensor:", rank_4_tensor.shape)
print("Elements along axis 0 of tensor:", rank_4_tensor.shape[0])
print("Elements along the last axis of tensor:", rank_4_tensor.shape[-1])
print("Total number of elements (3*2*4*5): ", tf.size(rank_4_tensor).numpy())
Type of every element: <dtype: 'float32'>
Number of axes: 4
Shape of tensor: (3, 2, 4, 5)
Elements along axis 0 of tensor: 3
Elements along the last axis of tensor: 5
Total number of elements (3*2*4*5): 120
Sin embargo, tenga en cuenta que laTensor.ndim
yTensor.shape
Los atributos no vuelvenTensor
objetos. si usted necesita unTensor
Utilice eltf.rank
otf.shape
Esta diferencia es sutil, pero puede ser importante cuando se construyen gráficos (más tarde).
tf.rank(rank_4_tensor)
<tf.Tensor: shape=(), dtype=int32, numpy=4>
tf.shape(rank_4_tensor)
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([3, 2, 4, 5], dtype=int32)>
A menudo, los ejes se ordenan de global a local: el eje de lote primero, seguido por las dimensiones espaciales, y las características para cada ubicación por último.
Typical axis order |
---|
|
Índice
Índice de un solo eje
TensorFlow sigue las reglas de indexación estándar de Python, similares aCómo indexar una lista o cadena en Python, y las reglas básicas para la indexación NumPy.
- Los índices comienzan en 0
- los índices negativos cuentan hacia atrás desde el final
- Las columnas, :, se utilizan para las flechas: start:stop:step
rank_1_tensor = tf.constant([0, 1, 1, 2, 3, 5, 8, 13, 21, 34])
print(rank_1_tensor.numpy())
[ 0 1 1 2 3 5 8 13 21 34]
La indexación con un escalar elimina el eje:
print("First:", rank_1_tensor[0].numpy())
print("Second:", rank_1_tensor[1].numpy())
print("Last:", rank_1_tensor[-1].numpy())
First: 0
Second: 1
Last: 34
Índice con a:
El eje mantiene el eje:
print("Everything:", rank_1_tensor[:].numpy())
print("Before 4:", rank_1_tensor[:4].numpy())
print("From 4 to the end:", rank_1_tensor[4:].numpy())
print("From 2, before 7:", rank_1_tensor[2:7].numpy())
print("Every other item:", rank_1_tensor[::2].numpy())
print("Reversed:", rank_1_tensor[::-1].numpy())
Everything: [ 0 1 1 2 3 5 8 13 21 34]
Before 4: [0 1 1 2]
From 4 to the end: [ 3 5 8 13 21 34]
From 2, before 7: [1 2 3 5 8]
Every other item: [ 0 1 3 8 21]
Reversed: [34 21 13 8 5 3 2 1 1 0]
Indicaciones multi-axis
Los tensores de rango más alto se indexan pasando varios índices.
Las mismas reglas que en el caso de un solo eje se aplican a cada eje de forma independiente.
print(rank_2_tensor.numpy())
[[1. 2.]
[3. 4.]
[5. 6.]]
Pasando un número entero para cada índice, el resultado es un escalar.
# Pull out a single value from a 2-rank tensor
print(rank_2_tensor[1, 1].numpy())
You can index using any combination of integers and slices:
# Get row and column tensors
print("Second row:", rank_2_tensor[1, :].numpy())
print("Second column:", rank_2_tensor[:, 1].numpy())
print("Last row:", rank_2_tensor[-1, :].numpy())
print("First item in last column:", rank_2_tensor[0, -1].numpy())
print("Skip the first row:")
print(rank_2_tensor[1:, :].numpy(), "\n")
Second row: [3. 4.]
Second column: [2. 4. 6.]
Last row: [5. 6.]
First item in last column: 2.0
Skip the first row:
[[3. 4.]
[5. 6.]]
Here is an example with a 3-axis tensor:
print(rank_3_tensor[:, :, 4])
tf.Tensor(
[[ 4 9]
[14 19]
[24 29]], shape=(3, 2), dtype=int32)
|
Selecting the last feature across all locations in each example in the batch |
---|---|
|
|
Leer elGuía de cortes de tensiónpara aprender cómo puede aplicar la indexación para manipular elementos individuales en sus tensores.
Manipulación de formas
Recuperar un tensor es de gran utilidad.
# Shape returns a `TensorShape` object that shows the size along each axis
x = tf.constant([[1], [2], [3]])
print(x.shape)
(3, 1)
# You can convert this object into a Python list, too
print(x.shape.as_list())
[3, 1]
Usted puede transformar un tensor en una nueva forma.tf.reshape
La operación es rápida y barata ya que los datos subyacentes no necesitan ser duplicados.
# You can reshape a tensor to a new shape.
# Note that you're passing in a list
reshaped = tf.reshape(x, [1, 3])
print(x.shape)
print(reshaped.shape)
(3, 1)
(1, 3)
Los datos mantienen su diseño en la memoria y se crea un nuevo tensor, con la forma solicitada, apuntando a los mismos datos. TensorFlow utiliza el ordenamiento de la memoria "row-major" de estilo C, donde incrementar el índice más derecho corresponde a un solo paso en la memoria.
print(rank_3_tensor)
tf.Tensor(
[[[ 0 1 2 3 4]
[ 5 6 7 8 9]]
[[10 11 12 13 14]
[15 16 17 18 19]]
[[20 21 22 23 24]
[25 26 27 28 29]]], shape=(3, 2, 5), dtype=int32)
Si planea un tensor, puede ver qué orden está colocado en la memoria.
# A `-1` passed in the `shape` argument says "Whatever fits".
print(tf.reshape(rank_3_tensor, [-1]))
tf.Tensor(
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29], shape=(30,), dtype=int32)
El único uso razonable detf.reshape
es combinar o dividir los ejes adyacentes (o agregar / eliminar1
de la s).
Para este tensor 3x2x5, la reforma a (3x2)x5 o 3x(2x5) son dos cosas razonables que hacer, ya que las flechas no se mezclan:
print(tf.reshape(rank_3_tensor, [3*2, 5]), "\n")
print(tf.reshape(rank_3_tensor, [3, -1]))
tf.Tensor(
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]
[25 26 27 28 29]], shape=(6, 5), dtype=int32)
tf.Tensor(
[[ 0 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 19]
[20 21 22 23 24 25 26 27 28 29]], shape=(3, 10), dtype=int32)
|
|
Some good reshapes. |
---|---|---|
|
|
|
La remodelación "trabajará" para cualquier nueva forma con el mismo número total de elementos, pero no hará nada útil si no respeta el orden de los ejes.
Cambiar los ejes entf.reshape
No funciona, es necesariotf.transpose
Para eso.
# Bad examples: don't do this
# You can't reorder axes with reshape.
print(tf.reshape(rank_3_tensor, [2, 3, 5]), "\n")
# This is a mess
print(tf.reshape(rank_3_tensor, [5, 6]), "\n")
# This doesn't work at all
try:
tf.reshape(rank_3_tensor, [7, -1])
except Exception as e:
print(f"{type(e).__name__}: {e}")
tf.Tensor(
[[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]]
[[15 16 17 18 19]
[20 21 22 23 24]
[25 26 27 28 29]]], shape=(2, 3, 5), dtype=int32)
tf.Tensor(
[[ 0 1 2 3 4 5]
[ 6 7 8 9 10 11]
[12 13 14 15 16 17]
[18 19 20 21 22 23]
[24 25 26 27 28 29]], shape=(5, 6), dtype=int32)
InvalidArgumentError: { {function_node __wrapped__Reshape_device_/job:localhost/replica:0/task:0/device:GPU:0} } Input to reshape is a tensor with 30 values, but the requested shape requires a multiple of 7 [Op:Reshape]
|
|
Some bad reshapes. |
---|---|---|
|
|
|
Usted puede correr a través de formas no especificadas por completo. O bien la forma contiene unaNone
(una longitud de eje es desconocida) o la forma entera esNone
(El rango del tensor es desconocido).
A excepción de tf.RaggedTensor, tales formas sólo ocurrirán en el contexto de las APIs simbólicas de construcción de gráficos de TensorFlow:
- F. Funciones
- La fuente de fuego funcional.
Más enTipos
Tipos
Para inspeccionar atf.Tensor
El tipo de datos utiliza elTensor.dtype
de propiedad.
Cuando se crea atf.Tensor
Desde un objeto de Python, puede especificar opcionalmente el tipo de datos.
Si no lo hace, TensorFlow elige un tipo de datos que puede representar sus datos.tf.int32
Python y los números de puntos flotantestf.float32
De lo contrario, TensorFlow utiliza las mismas reglas que NumPy utiliza cuando se convierten en matrizes.
Puede ser de tipo a tipo.
the_f64_tensor = tf.constant([2.2, 3.3, 4.4], dtype=tf.float64)
the_f16_tensor = tf.cast(the_f64_tensor, dtype=tf.float16)
# Now, cast to an uint8 and lose the decimal precision
the_u8_tensor = tf.cast(the_f16_tensor, dtype=tf.uint8)
print(the_u8_tensor)
tf.Tensor([2 3 4], shape=(3,), dtype=uint8)
Transmisión
La transmisión es un concepto tomado de laCaracterísticas equivalentes en NumPyEn resumen, bajo ciertas condiciones, los tensores más pequeños se "estiran" automáticamente para encajar los tensores más grandes cuando se ejecutan operaciones combinadas sobre ellos.
El caso más simple y más común es cuando se intenta multiplicar o agregar un tensor a un escalar.
x = tf.constant([1, 2, 3])
y = tf.constant(2)
z = tf.constant([2, 2, 2])
# All of these are the same computation
print(tf.multiply(x, 2))
print(x * y)
print(x * z)
tf.Tensor([2 4 6], shape=(3,), dtype=int32)
tf.Tensor([2 4 6], shape=(3,), dtype=int32)
tf.Tensor([2 4 6], shape=(3,), dtype=int32)
Asimismo, los ejes de longitud 1 se pueden estirar para coincidir con los otros argumentos.
En este caso, una matriz 3x1 es elementalmente multiplicada por una matriz 1x4 para producir una matriz 3x4.[4]
.
# These are the same computations
x = tf.reshape(x,[3,1])
y = tf.range(1, 5)
print(x, "\n")
print(y, "\n")
print(tf.multiply(x, y))
tf.Tensor(
[[1]
[2]
[3]], shape=(3, 1), dtype=int32)
tf.Tensor([1 2 3 4], shape=(4,), dtype=int32)
tf.Tensor(
[[ 1 2 3 4]
[ 2 4 6 8]
[ 3 6 9 12]], shape=(3, 4), dtype=int32)
A broadcasted add: a |
---|
|
Aquí está la misma operación sin transmisión:
x_stretch = tf.constant([[1, 1, 1, 1],
[2, 2, 2, 2],
[3, 3, 3, 3]])
y_stretch = tf.constant([[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4]])
print(x_stretch * y_stretch) # Again, operator overloading
tf.Tensor(
[[ 1 2 3 4]
[ 2 4 6 8]
[ 3 6 9 12]], shape=(3, 4), dtype=int32)
La mayor parte del tiempo, la transmisión es eficiente tanto en el tiempo como en el espacio, ya que la operación de transmisión nunca materializa los tensores expandidos en la memoria.
Vea cómo se utiliza la transmisióntf.broadcast_to
.
print(tf.broadcast_to(tf.constant([1, 2, 3]), [3, 3]))
tf.Tensor(
[[1 2 3]
[1 2 3]
[1 2 3]], shape=(3, 3), dtype=int32)
A diferencia de las matemáticas, por ejemplo,broadcast_to
No hace nada especial para salvar la memoria. Aquí, usted está materializando el tensor.
Puede hacerse aún más complicado.Esta secciónEl libro de Jake VanderPlasPython Manual de Ciencia de Datosmuestra más trucos de transmisión (de nuevo en NumPy).
tf.convert_to a tensor
La mayoría de las operaciones, comotf.matmul
ytf.reshape
Argumentos de clasetf.Tensor
Sin embargo, notará en el caso anterior, los objetos de Python con la forma de tensores son aceptados.
La mayoría, pero no todos, de las llamadas de OSconvert_to_tensor
Existe un registro de conversiones, y la mayoría de las clases de objetos como NumPyndarray
, deTensorShape
Las listas de Python, ytf.Variable
Todos se convertirán automáticamente.
estetf.register_tensor_conversion_function
para más detalles, y si tiene su propio tipo que le gustaría convertir automáticamente a un tensor.
Tensores Tensores
Un tensor con números variables de elementos a lo largo de algún eje se llama "ragged".tf.ragged.RaggedTensor
por los datos racionalizados.
Por ejemplo, esto no puede ser representado como un tensor regular:
A |
---|
|
ragged_list = [
[0, 1, 2, 3],
[4, 5],
[6, 7, 8],
[9]]
try:
tensor = tf.constant(ragged_list)
except Exception as e:
print(f"{type(e).__name__}: {e}")
ValueError: Can't convert non-rectangular Python sequence to Tensor.
En lugar de crear atf.RaggedTensor
Usotf.ragged.constant
:
ragged_tensor = tf.ragged.constant(ragged_list)
print(ragged_tensor)
<tf.RaggedTensor [[0, 1, 2, 3], [4, 5], [6, 7, 8], [9]]>
La forma de unatf.RaggedTensor
contendrá algunos ejes con longitudes desconocidas:
print(ragged_tensor.shape)
(4, None)
Tensores de string
tf.string
es adtype
, que es decir que puede representar datos como cadenas (arrayes de bytes de longitud variable) en tensores.
Las cadenas son atómicas y no pueden ser indexadas como las cadenas de Python. La longitud de la cadena no es uno de los ejes del tensor.tf.strings
funciones para manipularlos.
Aquí está un tensor de cuerdas escalares:
# Tensors can be strings, too here is a scalar string.
scalar_string_tensor = tf.constant("Gray wolf")
print(scalar_string_tensor)
tf.Tensor(b'Gray wolf', shape=(), dtype=string)
Un vector de cuerdas:
A vector of strings, shape: |
---|
|
# If you have three string tensors of different lengths, this is OK.
tensor_of_strings = tf.constant(["Gray wolf",
"Quick brown fox",
"Lazy dog"])
# Note that the shape is (3,). The string length is not included.
print(tensor_of_strings)
tf.Tensor([b'Gray wolf' b'Quick brown fox' b'Lazy dog'], shape=(3,), dtype=string)
En el artículo anterior se imprime elb
El prefijo indica quetf.string
dtype no es una cadena de código unicode, sino una cadena de byte.Unicode Tutorialpara más información sobre cómo trabajar con texto unicode en TensorFlow.
Si pasas los caracteres de unicode, son UTF-8 codificados.
tf.constant("🥳👍")
<tf.Tensor: shape=(), dtype=string, numpy=b'\xf0\x9f\xa5\xb3\xf0\x9f\x91\x8d'>
Algunas funciones básicas con cuerdas se pueden encontrar entf.strings
Incluyendotf.strings.split
.
# You can use split to split a string into a set of tensors
print(tf.strings.split(scalar_string_tensor, sep=" "))
tf.Tensor([b'Gray' b'wolf'], shape=(2,), dtype=string)
# ...but it turns into a `RaggedTensor` if you split up a tensor of strings,
# as each string might be split into a different number of parts.
print(tf.strings.split(tensor_of_strings))
<tf.RaggedTensor [[b'Gray', b'wolf'], [b'Quick', b'brown', b'fox'], [b'Lazy', b'dog']]>
Three strings split, shape: |
---|
|
ytf.strings.to_number
:
text = tf.constant("1 10 100")
print(tf.strings.to_number(tf.strings.split(text, " ")))
tf.Tensor([ 1. 10. 100.], shape=(3,), dtype=float32)
Aunque no se puede utilizartf.cast
Para convertir un tensor de cuerdas en números, puede convertirlo en bytes y luego en números.
byte_strings = tf.strings.bytes_split(tf.constant("Duck"))
byte_ints = tf.io.decode_raw(tf.constant("Duck"), tf.uint8)
print("Byte strings:", byte_strings)
print("Bytes:", byte_ints)
Byte strings: tf.Tensor([b'D' b'u' b'c' b'k'], shape=(4,), dtype=string)
Bytes: tf.Tensor([ 68 117 99 107], shape=(4,), dtype=uint8)
# Or split it up as unicode and then decode it
unicode_bytes = tf.constant("アヒル 🦆")
unicode_char_bytes = tf.strings.unicode_split(unicode_bytes, "UTF-8")
unicode_values = tf.strings.unicode_decode(unicode_bytes, "UTF-8")
print("\nUnicode bytes:", unicode_bytes)
print("\nUnicode chars:", unicode_char_bytes)
print("\nUnicode values:", unicode_values)
Unicode bytes: tf.Tensor(b'\xe3\x82\xa2\xe3\x83\x92\xe3\x83\xab \xf0\x9f\xa6\x86', shape=(), dtype=string)
Unicode chars: tf.Tensor([b'\xe3\x82\xa2' b'\xe3\x83\x92' b'\xe3\x83\xab' b' ' b'\xf0\x9f\xa6\x86'], shape=(5,), dtype=string)
Unicode values: tf.Tensor([ 12450 12498 12523 32 129414], shape=(5,), dtype=int32)
Eltf.string
dtype se utiliza para todos los datos de bytes crudos en TensorFlow.tf.io
El módulo contiene funciones para la conversión de datos a y desde bytes, incluyendo la decodificación de imágenes y el análisis de csv.
Tensores de ahorro
A veces, sus datos son escasos, como un espacio de embalaje muy amplio.tf.sparse.SparseTensor
y operaciones relacionadas para almacenar datos escasos de manera eficiente.
A |
---|
|
# Sparse tensors store values by index in a memory-efficient manner
sparse_tensor = tf.sparse.SparseTensor(indices=[[0, 0], [1, 2]],
values=[1, 2],
dense_shape=[3, 4])
print(sparse_tensor, "\n")
# You can convert sparse tensors to dense
print(tf.sparse.to_dense(sparse_tensor))
SparseTensor(indices=tf.Tensor(
[[0 0]
[1 2]], shape=(2, 2), dtype=int64), values=tf.Tensor([1 2], shape=(2,), dtype=int32), dense_shape=tf.Tensor([3 4], shape=(2,), dtype=int64))
tf.Tensor(
[[1 0 0 0]
[0 0 2 0]
[0 0 0 0]], shape=(3, 4), dtype=int32)
Originalmente publicado en el sitio web de TensorFlow, este artículo aparece aquí bajo un nuevo título y está licenciado bajo CC BY 4.0.
Originally published on the TensorFlow website,este artículo aparece aquí bajo un nuevo título y está licenciado bajoCC BY 4.0.Las muestras de código compartidas bajo laApache 2.0 License.
Sitio web de TensorFlow