Nangona iimpumelelo zakho ezilungileyo, i-LLM ayikho ngokufanelekileyo. Yintoni kufuneka utshintshe ngexesha elandelayo? Ngaba uqhagamshelane? Ukuguqulwa kwimodeli? Fine-tune? Yonke into ingaba iinketho ezifanelekileyo kwaye kukho inqaku yokufunda ezi zonyango.
Principle V: Follow Prompt-Fix Escalation Ladder
Umgangatho we-5: Ukulandela i-Prompt-Fix Escalation Scale(Lezi zihlanganisa kwi-Principles of AI Engineering series: bheka iimpazamo
Xa isicelo esebenzayo asebenzayo njengoko kufuneka, ndiyabakhokela iifayile ezilandelayo ngexesha lokufuneka:
-
Expanding and rephrasing instructions.
-
Adding examples.
-
Adding an explanation field.
-
Using a different model.
-
Breaking up a single prompt into multiple prompts.
-
Fine-tuning the model.
-
Throwing the laptop out the window in frustration.
Kwiimeko ezininzi, umzekelo kwimibelelwano iya kuba ezahlukeneyo; Nangona kunjalo, ukufumana umzila we-default ukunciphisa ixesha kunye nokuvimbela umthamo wayo yokubhalisa. Le list ayenzelwe njenge-step rigid, kodwa njenge-guide rope eyenzelwe ukunceda.
Ngiya kuxhomekeke ngalinye iingxaki. Iintlobo ezintathu zokuqala zithunyelwa kwi-Prompt Engineering kwaye ziya kubhalwe ngakumbi kwi-chapter elandelayo. Iingxaki ze-Multi-prompt kunye ne-Fine-tuning ziya kubandakanyeka iingxaki ezizodwa.
Lightweight Approaches
Umgangatho weLightweightAdding Instructions
Yinto yokuqala ukucwangcisa kubonisa kwakhona kwi-LLM njani nge-instructions prompt. Qinisekisa ukucwangcisa, ukucwangcisa, okanye ukucwangcisa imiyalelo.
Ngaba unemibuzo ukuguqula okanye ukuguqula iingcebiso ezininzi kwiindawo ezahlukeneyo ze-prompt - i-LLM ayidinga ukuguqula. Ngokuba izicwangciso ezininzi ezininzi ezininzi ezininzi, ukongeza ezininzi kwi-prompt okanye ekupheleni kwimiphumo ephakeme kakhulu (
Adding Examples
I-LLM zinxibelelana kakuhle kwi-in-context learning (i-input-output examples). Ziziphi na iimodeli ezincinane ezisetyenziswa; ezi zibonakalayo kakhulu "intelligent" ngoko kufuneka zihlanganisa kakhulu (
Umzekelo wePrompt kunye ne-2-shot Inference (I-Language Detection):
Detect the language of the text and output it in the JSON format: {“language”: “name_of_language”}. If you don’t know the language, output “unknown” in the language field.
Example I:
Input: Hello
Output: {“language”: “English”}
Example II:
Input: EjnWcn
Output: {“language”: “Unknown”}
Text: {{text}}
Ngokuvamile uzisebenzisa 1-3 amaxabiso, nangona iimeko ezininzi ungayifaka. Kukho iziphumo ukuba imveliso iyahambisa kunye namanyathelo ezininzi (
Adding an Explanation Field
I-LLM, njenge-umntu, ibonakalisa ukuba ibonakalise imiqondiso yayo. Ukongeza indawo ye- "i-explanation" kwi-JSON yakho ye-output kwaye i-output iya kuba kakuhle. Oku kuya kukunceda ukholelwa ukuba umzobo uyenza izixazululo ezithile kunye nokuguqula izicelo kunye neengxaki.
Ukusetyenziswa kweemveliso ye-inthanel ye-inthanel ye-inthanel ye-inthanel ye-inthanel ye-inthanel ye-inthanel ye-inthanel (
Uyakwazi ukufumana i-A
Changing the Model
Iimodeli ezahlukeneyo ziyafumaneka kwiintlobo ezahlukeneyo zophando. Iimodeli ye-OpenAI ye-o3 ziyafumaneka kwi-analyzing code, kodwa i-good old 4o inokukhawuleza ukuvelisa i-writing engcono nangona i-token engabizi. Indawo yobugcisa we-AI injineli ibandakanya izinzuzo kunye neengxaki zeemodeli ezikhoyo xa zithunyelwe kwaye zithunyelwe.
Ukusebenza ngempumelelo ngokukhawuleza nangokufanelekileyo xa unayo izifundo kunye ne-metric ezihambelana ne-"fitness" ye-modele ngamnye kumxholo.
Heavyweight Approaches
Iingxaki ze-heavyweightYonke indlela ukuya kwakhona yaba ixabiso eliphantsi ngokufanelekileyo. Ngoku siphuma kwi-heavyweight fixes.
Breaking Up the Prompt
Ukuba umnqweno omnye akukwazi ukufumana umsebenzi - ngoko ke akufuneka inkqubo yeempawu ezimbini okanye ezininzi? Oku kungenziwa ukusebenza ngexesha elinye; iindlela ezimbini eziqhelekileyo zihlanganisa:
-
Splitting the prompt by area of responsibility.
-
Using a new prompt as a guardrail reviewing output of the previous one.
Zonke iinkqubo ziyafumaneka kwi
Fine-Tuning
I-Fine-tuning yindlela engaphezulu kunyango kunyango ezininzi kunyango ezininzi. Kwiimeko ezininzi, ndisebenzisa njengendlela yokuqala.
Yintoni ndingathanda ukwamkela i-fine-tuning kwiimeko ezininzi? I-fine-tuning iyisiseko ye-machine learning
Qinisekisa i-fine-tuning xa:
- Zonke iinkqubo ezininzi ziye zikhusela ukufumana le mfuneko.
- Inkinga kubaluleke kakhulu kunye ne-specialized, kwaye iinkcukacha ze-LLM zangaphantsi.
- Ukuba unayo isicelo esikhulu kwaye ufuna ukunciphisa imali usebenzisa iimodeli ye-low-end.
- Ubuncinane ubuncinane kufuneka, ngoko iimpompo ezininzi ayidlulanga ngexesha.
Conclusion
UkucingaOkwangoku, le nqaku ibonisa umzekelo weengxaki oya kufuneka uyenze xa iingxaki awukwazi ukusebenza ngokufanelekileyo. Okokuqala, uya kubandakanya indlela yokusebenza ngokufanelekileyo. Ukuba oku akufanelekileyo, nqakraza ukuguqulwa kwimodeli kwaye nqakraza ukuba oku kunyusa. Umgca elandelayo isebenzisa iingxaki ezininzi zokuxhumana. Ekugqibeleni, nqakraza ukuguqulwa okuphumelela ukuba zonke iindlela ezahlukileyo.
Ukuba ufumane le post - ukubhalisela ngaphezulu.