565 o'qishlar
565 o'qishlar

Men o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z

tomonidan Superlinked18m2025/06/26
Read on Terminal Reader

Juda uzoq; O'qish

Superlinked's vektor search.It superbs complex RAG pipelines by embedding and querying documents directly - making research faster, simpler, and smarter.
featured image - Men o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z
Superlinked HackerNoon profile picture
0-item
1-item


O‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.

O‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.

U o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘

This article delves into constructing such an AI research agent using Superlinked's complex document embedding capabilities. By integrating semantic and temporal relevance, we eliminate the need for complex reranking, ensuring efficient and accurate retrieval of information.

Superlinked‘in kompleks dokument embedding kapasitativini kullandim. Semantic and temporal relevance integrating, we eliminate the need for complex rearranging, ensuring efficient and accurate retrieval of information.

TL;DR:

Superlinked's vektor search.It superbs complex RAG pipelines by embedding and querying documents directly - making research faster, simpler, and smarter.

(Hayni o‘zingizni ko‘qda o‘zingizni o‘zingizni o‘zingizni o‘zingizni o‘zingizni?

GitHub-da open source qilmadi.Burda.BurdaBurdaBiz buradayikyardım.yardımyardım

O‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.here’s the Kolob.

Kolob.Kolob

Nadi o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z?

Traditionally, building such a system involves complexity and considerable resource investment. Search systems typically retrieve an initial broad set of documents based on relevance and subsequently applies a secondary reranking process to refinish and reorder results. While reranking enhances accuracy, it significantly increases computational complexity, latency, and overhead due to the extensive data retrieval initially required. Superlinked addresses this complexity by combining structured numeric and categorical embeddings with semantic text embeddings, providing comprehensive multimodal vectors. This method significantly enhances search accuracy by preserving attribute-specific information within each embedding.

Superlinked sistemini qoysan.

Bu agentni 3 o‘z o‘z o‘z:

  1. Search Papers: Search for research papers by topic (yani “quantum computing”) o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.
  2. U bilan o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.
  3. Qiyamlar: Qiyamlar o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.

Superlinked o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.

Step 1 : Toolbox qaytaradi

 %pip install superlinked

Abstract Tool klasa qoʻyim, o‘z sizga qoʻyim, o‘z sizga qoʻyim.

import pandas as pd
import superlinked.framework as sl
from datetime import timedelta
from sentence_transformers import SentenceTransformer
from openai import OpenAI
import os
from abc import ABC, abstractmethod
from typing import Any, Optional, Dict
from tqdm import tqdm
from google.colab import userdata

# Abstract Tool Class
class Tool(ABC):
    @abstractmethod
    def name(self) -> str:
        pass

    @abstractmethod
    def description(self) -> str:
        pass

    @abstractmethod
    def use(self, *args, **kwargs) -> Any:
        pass


# Get API key from Google Colab secrets
try:
    api_key = userdata.get('OPENAI_API_KEY')
except KeyError:
    raise ValueError("OPENAI_API_KEY not found in user secrets. Please add it using Tools > User secrets.")

# Initialize OpenAI Client
api_key = os.environ.get("OPENAI_API_KEY", "your-openai-key")  # Replace with your OpenAI API key
if not api_key:
    raise ValueError("Please set the OPENAI_API_KEY environment variable.")

client = OpenAI(api_key=api_key)
model = "gpt-4"


Step 2 : Dataset qilmadi

Bu nümunadda data setni 10,000 AI research papur o‘zingizdir.KadiqO‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z

import pandas as pd

!wget --no-check-certificate 'https://drive.google.com/uc?export=download&id=1FCR3TW5yLjGhEmm-Uclw0_5PWVEaLk1j' -O arxiv_ai_data.csv


Biz o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘.

df = pd.read_csv('arxiv_ai_data.csv').head(100)

# Convert to datetime but keep it as datetime (more readable and usable)
df['published'] = pd.to_datetime(df['published'])

# Ensure summary is a string
df['summary'] = df['summary'].astype(str)

# Add 'text' column for similarity search
df['text'] = df['title'] + " " + df['summary']
Debug: Columns in original DataFrame: ['authors', 'categories', 'comment', 'doi', 'entry_id', 'journal_ref' 'pdf_url', 'primary_category', 'published', 'summary', 'title', 'updated']

Dataset Columns (dataset kolomlar)

Bu data kolonlarimizda qilmizdir, o‘z o‘z qilmizdir, o‘z qilmizdir:

  1. O‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.
  2. Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract: Abstract.
  3. Entry_id: arXiv-i o‘z o‘z o‘z o‘z o‘z o‘z.

Bu demonstrasyonda biz 4 kolonda konsantrasiyadi:entry_idO‘z,publishedO‘z,titleO‘zsummaryU optimize search quality, titlab o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.

Superlinked's In-Memory Indexer: Superlinked's in-memory indexing va datasetimizni direkt RAM-i qaytarib o‘z qaytarib o‘z qaytarib o‘z qaytarib o‘z qaytarib o‘z qaytarib o‘z qaytarib o‘z qaytarib o‘z.

Step 3 : Superlinked Schema definishadi

Biz o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘zPaperSchemaKey fieldlar:

lass PaperSchema(sl.Schema):
    text: sl.String
    published: sl.Timestamp  # This will handle datetime objects properly
    entry_id: sl.IdField
    title: sl.String
    summary: sl.String

paper = PaperSchema()


Superlinked spaces o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z

Bizni data setni organizing and effectively querying o‘z iki specialized vector spaces defining: TextSimilaritySpace and RecencySpace.

  1. TextSimilaritySpace

O‘zTextSimilaritySpaceTekstil informativni coding, o‘z textual informativni coding, o‘z textual informativni coding, o‘z textual informativni coding, o‘z textual informativni coding, o‘z textual informativni coding, o‘z textual informativni coding, o‘z textual informativni coding.

text_space = sl.TextSimilaritySpace(
    text=sl.chunk(paper.text, chunk_size=200, chunk_overlap=50),
    model="sentence-transformers/all-mpnet-base-v2"
)


  1. Recenziyalar

O‘zRecencySpaceO‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z

recency_space = sl.RecencySpace(
    timestamp=paper.published,
    period_time_list=[
        sl.PeriodTime(timedelta(days=365)),      # papers within 1 year
        sl.PeriodTime(timedelta(days=2*365)),    # papers within 2 years
        sl.PeriodTime(timedelta(days=3*365)),    # papers within 3 years
    ],
    negative_filter=-0.25
)


RecencySpace o‘z filtravadi, o‘z e-mail o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.

  • 365 o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.
  • 1095 o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.

O‘znegative_filterU o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.

Paper A: Published in 1996 
Paper B: Published in 1993

Scoring example:
- Text similarity score: Both papers get 0.8
- Recency score:
  - Paper A: Receives the full recency boost (1.0)
  - Paper B: Gets penalized (-0.25 due to negative_filter)

Final combined scores:
- Paper A: Higher final rank
- Paper B: Lower final rank


Bu spazmatlar data setni daha aksesib, efikasiz qoysan. Bunlar ko‘rida bazadi və ko‘rida bazadi ko‘rida, o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.

U 4 : Index bo‘ladi

O‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z:

paper_index = sl.Index([text_space, recency_space])

DataFrame o‘z qaytarib o‘z qaytarib o‘z qaytarib o‘z qaytarib o‘z qaytarib o‘z qaytarib o‘z qaytarib o‘z.

# Parser to map DataFrame columns to schema fields
parser = sl.DataFrameParser(
    paper,
    mapping={
        paper.entry_id: "entry_id",
        paper.published: "published",
        paper.text: "text",
        paper.title: "title",
        paper.summary: "summary",
    }
)

# Set up in-memory source and executor
source = sl.InMemorySource(paper, parser=parser)
executor = sl.InMemoryExecutor(sources=[source], indices=[paper_index])
app = executor.run()

# Load the DataFrame with a progress bar using batches
batch_size = 10
data_batches = [df[i:i + batch_size] for i in range(0, len(df), batch_size)]
for batch in tqdm(data_batches, total=len(data_batches), desc="Loading Data into Source"):
    source.put([batch])


Superlinked o‘z o‘z o‘z o‘z superlinked – 1000 o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.

Step 5 : Crafting Qoyni.

O‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z

# Define the query
knowledgebase_query = (
    sl.Query(
        paper_index,
        weights={
            text_space: sl.Param("relevance_weight"),
            recency_space: sl.Param("recency_weight"),
        }
    )
    .find(paper)
    .similar(text_space, sl.Param("search_query"))
    .select(paper.entry_id, paper.published, paper.text, paper.title, paper.summary)
    .limit(sl.Param("limit"))
)


Bu o‘z bizni qilmadi, o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.

Step 6 : Tools bo‘ladi

O‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.

Biz o‘z 3 instrument yaradi...

  1. Bu toolni superlinked'in indeksini qilmadi, o‘z 5 qilmadi qilmadi, o‘z qilmidi qilmadi. Bu toolni qilmidi qilmidi, o‘z qilmidi, o‘z qilmidi, o‘z qilmidi qilmidi.
class RetrievalTool(Tool):
    def __init__(self, df, app, knowledgebase_query, client, model):
        self.df = df
        self.app = app
        self.knowledgebase_query = knowledgebase_query
        self.client = client
        self.model = model

    def name(self) -> str:
        return "RetrievalTool"

    def description(self) -> str:
        return "Retrieves a list of relevant papers based on a query using Superlinked."

    def use(self, query: str) -> pd.DataFrame:
        result = self.app.query(
            self.knowledgebase_query,
            relevance_weight=1.0,
            recency_weight=0.5,
            search_query=query,
            limit=5
        )
        df_result = sl.PandasConverter.to_pandas(result)
        # Ensure summary is a string
        if 'summary' in df_result.columns:
            df_result['summary'] = df_result['summary'].astype(str)
        else:
            print("Warning: 'summary' column not found in retrieved DataFrame.")
        return df_result


O‘z o‘z o‘zSummarization ToolO‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.paper_idO‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘zpaper_idO‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.

class SummarizationTool(Tool):
    def __init__(self, df, client, model):
        self.df = df
        self.client = client
        self.model = model

    def name(self) -> str:
        return "SummarizationTool"

    def description(self) -> str:
        return "Generates a concise summary of specified papers using an LLM."

    def use(self, query: str, paper_ids: list) -> str:
        papers = self.df[self.df['entry_id'].isin(paper_ids)]
        if papers.empty:
            return "No papers found with the given IDs."
        summaries = papers['summary'].tolist()
        summary_str = "\n\n".join(summaries)
        prompt = f"""
        Summarize the following paper summaries:\n\n{summary_str}\n\nProvide a concise summary.
        """
        response = self.client.chat.completions.create(
            model=self.model,
            messages=[{"role": "user", "content": prompt}],
            temperature=0.7,
            max_tokens=500
        )
        return response.choices[0].message.content.strip()


Biz o‘z bizniQuestionAnsweringToolO‘z o‘z o‘z o‘z o‘z o‘z o‘zRetrievalToolSiz o‘z sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga

class QuestionAnsweringTool(Tool):
    def __init__(self, retrieval_tool, client, model):
        self.retrieval_tool = retrieval_tool
        self.client = client
        self.model = model

    def name(self) -> str:
        return "QuestionAnsweringTool"

    def description(self) -> str:
        return "Answers questions about research topics using retrieved paper summaries or general knowledge if no specific context is available."

    def use(self, query: str) -> str:
        df_result = self.retrieval_tool.use(query)
        if 'summary' not in df_result.columns:
            # Tag as a general question if summary is missing
            prompt = f"""
            You are a knowledgeable research assistant. This is a general question tagged as [GENERAL]. Answer based on your broad knowledge, not limited to specific paper summaries. If you don't know the answer, provide a brief explanation of why.

            User's question: {query}
            """
        else:
            # Use paper summaries for specific context
            contexts = df_result['summary'].tolist()
            context_str = "\n\n".join(contexts)
            prompt = f"""
            You are a research assistant. Use the following paper summaries to answer the user's question. If you don't know the answer based on the summaries, say 'I don't know.'

            Paper summaries:
            {context_str}

            User's question: {query}
            """
        response = self.client.chat.completions.create(
            model=self.model,
            messages=[{"role": "user", "content": prompt}],
            temperature=0.7,
            max_tokens=500
        )
        return response.choices[0].message.content.strip()


U 7 : Kernel Agents bo‘ladi

Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent. Kernel Agent.

class KernelAgent:
    def __init__(self, retrieval_tool: RetrievalTool, summarization_tool: SummarizationTool, question_answering_tool: QuestionAnsweringTool, client, model):
        self.retrieval_tool = retrieval_tool
        self.summarization_tool = summarization_tool
        self.question_answering_tool = question_answering_tool
        self.client = client
        self.model = model

    def classify_query(self, query: str) -> str:
        prompt = f"""
        Classify the following user prompt into one of the three categories:
        - retrieval: The user wants to find a list of papers based on some criteria (e.g., 'Find papers on AI ethics from 2020').
        - summarization: The user wants to summarize a list of papers (e.g., 'Summarize papers with entry_id 123, 456, 789').
        - question_answering: The user wants to ask a question about research topics and get an answer (e.g., 'What is the latest development in AI ethics?').

        User prompt: {query}

        Respond with only the category name (retrieval, summarization, question_answering).
        If unsure, respond with 'unknown'.
        """
        response = self.client.chat.completions.create(
            model=self.model,
            messages=[{"role": "user", "content": prompt}],
            temperature=0.7,
            max_tokens=10
        )
        classification = response.choices[0].message.content.strip().lower()
        print(f"Query type: {classification}")
        return classification

    def process_query(self, query: str, params: Optional[Dict] = None) -> str:
        query_type = self.classify_query(query)
        if query_type == 'retrieval':
            df_result = self.retrieval_tool.use(query)
            response = "Here are the top papers:\n"
            for i, row in df_result.iterrows():
                # Ensure summary is a string and handle empty cases
                summary = str(row['summary']) if pd.notna(row['summary']) else ""
                response += f"{i+1}. {row['title']} \nSummary: {summary[:200]}...\n\n"
            return response
        elif query_type == 'summarization':
            if not params or 'paper_ids' not in params:
                return "Error: Summarization query requires a 'paper_ids' parameter with a list of entry_ids."
            return self.summarization_tool.use(query, params['paper_ids'])
        elif query_type == 'question_answering':
            return self.question_answering_tool.use(query)
        else:
            return "Error: Unable to classify query as 'retrieval', 'summarization', or 'question_answering'."


Bu etapda, bütün componentlar Research Agent Systemni konfigiradi. Sistemni ko‘zida Kernel Agentni qo‘zingizga, o‘zi Research Agent Systemni ko‘zingizga qilmadi.

retrieval_tool = RetrievalTool(df, app, knowledgebase_query, client, model)
summarization_tool = SummarizationTool(df, client, model)
question_answering_tool = QuestionAnsweringTool(retrieval_tool, client, model)

# Initialize KernelAgent
kernel_agent = KernelAgent(retrieval_tool, summarization_tool, question_answering_tool, client, model)


Biz sistemini test edim.

# Test query print(kernel_agent.process_query("Find papers on quantum computing in last 10 years"))

O‘z o‘z activateRetrievalToolO‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z

Query type: retrieval
Here are the top papers:
1. Quantum Computing and Phase Transitions in Combinatorial Search 
Summary: We introduce an algorithm for combinatorial search on quantum computers that
is capable of significantly concentrating amplitude into solutions for some NP
search problems, on average. This is done by...

1. The Road to Quantum Artificial Intelligence 
Summary: This paper overviews the basic principles and recent advances in the emerging
field of Quantum Computation (QC), highlighting its potential application to
Artificial Intelligence (AI). The paper provi...

1. Solving Highly Constrained Search Problems with Quantum Computers 
Summary: A previously developed quantum search algorithm for solving 1-SAT problems in
a single step is generalized to apply to a range of highly constrained k-SAT
problems. We identify a bound on the number o...

1. The model of quantum evolution 
Summary: This paper has been withdrawn by the author due to extremely unscientific
errors....

1. Artificial and Biological Intelligence 
Summary: This article considers evidence from physical and biological sciences to show
machines are deficient compared to biological systems at incorporating
intelligence. Machines fall short on two counts: fi...


Biz o‘z o‘z, o‘z o‘z, o‘z o‘z, o‘z o‘z o‘z, o‘z o‘z o‘z.

print(kernel_agent.process_query("Summarize this paper", params={"paper_ids": ["http://arxiv.org/abs/cs/9311101v1"]}))

Query type: summarization
This paper discusses the challenges of learning logic programs that contain the cut predicate (!). Traditional learning methods cannot handle clauses with cut because it has a procedural meaning. The proposed approach is to first generate a candidate base program that covers positive examples, and then make it consistent by inserting cut where needed. Learning programs with cut is difficult due to the need for intensional evaluation, and current induction techniques may need to be limited to purely declarative logic languages.


U o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘.RepositoryBu o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z!

O‘zlar

Notebook kodlar

  • Semantic and temporal relevancy kombinasiyalarda kompleks reranking qilmadi o‘z o‘z o‘z o‘z o‘z qilmadi.
  • Negative_filter=-0,25) o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.
  • Modular tool-based architecture sizga specialization components to handle distinct tasks (recovery, summarization, question-answering) o‘z sistem cohesion.
  • Bu batch_size=10 (batch_size=10) data bo‘lashing sistem stability bo‘lashing big research data sets.
  • Adjustable query weights sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga sizga
  • Qodgan qaytarganni qaytarganni qaytarganni qaytarganni qaytarganni qaytarganni qaytarganni qaytarganni qaytarganni qaytarganni.

Agentsik AI assistant workflow o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z o‘z.

contributorlar

  • Vipul Maheshwari, autor
  • Filip Makraduli, bilan bilan bilan


Trending Topics

blockchaincryptocurrencyhackernoon-top-storyprogrammingsoftware-developmenttechnologystartuphackernoon-booksBitcoinbooks