paint-brush
Many illusions are found in architectureby@matthewluckiesh
124 reads

Many illusions are found in architecture

by Matthew LuckieshApril 24th, 2023
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

Many illusions are found in architecture and, strangely enough, many of these were recognized long before painting developed beyond its primitive stages. The architecture of classic Greece displays a highly developed knowledge of many geometrical illusions and the architects of those far-off centuries carefully worked out details for counteracting them. Drawings reveal many illusions to the architect, but many are not predicted by them. The ever-changing relations of lines and forms in architecture as we vary our viewpoint introduce many illusions which may appear and disappear. No view of a group of buildings or of the components of a single structure can be free from optical illusions. We never see in the reality the same relations of lines, forms, colors, and brightnesses as indicated by the drawings or blue-prints. Perhaps this is one of the best reasons for justifying the construction of expensive models of our more pretentious structures.
featured image - Many illusions are found in architecture
Matthew Luckiesh HackerNoon profile picture

Visual Illusions: Their Causes, Characteristics and Applications by Matthew Luckiesh is part of the HackerNoon Books Series. You can jump to any chapter in this book here. ARCHITECTURE

XIII. ARCHITECTURE

Many illusions are found in architecture and, strangely enough, many of these were recognized long before painting developed beyond its primitive stages. The architecture of classic Greece displays a highly developed knowledge of many geometrical illusions and the architects of those far-off centuries carefully worked out details for counteracting them. Drawings reveal many illusions to the architect, but many are not predicted by them. The ever-changing relations of lines and forms in architecture as we vary our viewpoint introduce many illusions which may appear and disappear. No view of a group of buildings or of the components of a single structure can be free from optical illusions. We never see in the reality the same relations of lines, forms, colors, and brightnesses as indicated by the drawings or blue-prints. Perhaps this is one of the best reasons for justifying the construction of expensive models of our more pretentious structures.

No detailed account of the many architectural illusions will be attempted, for it is easy for the reader to see many of the possibilities suggested by preceding chapters. However, a few will be touched upon to reveal the magnitude of the illusory effect and to[Pg 196] aid the observer in looking for or recognizing them, or purely for historical interest. In architecture the eye cannot be wholly satisfied by such tools as the level, the square, and the plumb-line. The eye is satisfied only when the appearance is satisfactory. For the purpose of showing the extent of certain architectural illusions, the compensatory measures applied by the Greeks are excellent examples. These also reveal the remarkable application of science to architecture as compared with the scanty application in painting of the same period.

During the best period of Grecian art many refinements were applied in order to correct optical illusions. It would be interesting to know to what extent the magnitude of the illusions as they appeared to many persons were actually studied. The Parthenon of Athens affords an excellent example of the magnitude of the corrections which the designer thought necessary in order to satisfy the eye. The long lines of the architrave—the beam which surmounts the columns or extends from column to column—would appear to sag if it were actually straight. This is also true of the stylobate, or substructure of a colonnade, and of pediments and other features. These lines were often convex instead of being straight as the eye desires to see them.

In the Parthenon, the stylobate has an upward curvature of more than four inches on the sides of the edifice and of more than two and a half inches on the east and west fronts. Vertical features were made to incline inward in order to correct the common appearance of leaning outward at the top. In[Pg 197] the Parthenon, the axes of the columns are not vertical, but they are inclined inward nearly three inches. They are said also to be inclined toward each other to such a degree that they would meet at an altitude of one mile above the ground. The eleven-foot frieze and architrave is inclined inward about one and one-half inches.

In Fig. 85, a represents the front of a temple as it should appear; b represents its appearance (exaggerated) if it were actually built like a without compensations for optical illusions; c represents it as built and showing the physical corrections (exaggerated) in order that it may appear to the eye as a does.

Tall columns if they are actually straight are likely to appear somewhat shrunken in the middle; therefore they are sometimes made slightly swollen in order to appear straight. This outward curvature of the profile is termed an entasis and in the Parthenon column, which is thirty-four feet in height, amounted to about three-fourths of an inch. In some early Grecian works, it is said that this correction was overdone but that its omission entirely is quite unsatisfactory. Some authorities appear to believe that an excellent compromise is found in the Parthenon columns.

Larger Image

Fig. 85.—Exaggerated illusions in architecture.

One of the conditions which is responsible for certain illusions and has been compensated for on occasions is represented in Fig. 86. On the left are a series of squares of equal size placed in a vertical row. If these are large so that they might represent stories in a building they will appear to decrease in size from the bottom upward, because of the decreasing[Pg 199] projection at the eye. This is obvious if the eye is considered to be at the point where the inclined lines meet. In order to compensate for the variation in visual angle, there must be a series of rectangles increasing considerably in height toward the top. The correction is shown in the illustration. It is stated that an inscription on an ancient temple was written in letters arranged vertically, and in order to make them appear of equal size they were actually increased in size toward the top according to the law represented in Fig. 86. Obviously a given correction would be correct only for one distance in a given plane.

Fig. 86.—Illustrating the influence of visual angle upon apparent vertical height.

In Chapter VIII the phenomenon of irradiation was discussed and various examples were presented. It exerts its influence in the arts as elsewhere. Columns viewed against a background of white sky[Pg 200] appear of smaller diameter than when they are viewed against a dark background. This is illustrated in Fig. 87 where the white and the black columns are supposed to be equal in diameter.

The careful observer will find numberless optical illusions and occasionally he will recognize an attempt on the part of the architect to apply an illusory effect to his advantage. In Fig. 88 some commonplace illusions are presented, not for what they are worth, but to suggest how prevalent they may be. Where the pole or column intersects the arches or circle, there is an apparent change in the direction of the curved lines. The different types of arches show different degrees of the illusion. It may be of interest for the reader to refer to preceding chapters and to ascertain what types of illusions are involved.

Fig. 87.—Irradiation in architecture.

If a high wall ends in a series of long horizontal steps at a slightly inclined sidewalk, the steps are not likely to appear horizontal.

Some remarkable illusions of depth or of solid form are given to flat surfaces when snow is driven against them so as to adhere in decreasing amounts similar to shading.

A suggestion of augmented height may be given[Pg 201] to a low tower by decreasing the size of its successive portions more rapidly than demanded by perspective alone. The same principal can be applied in many ways. For example, in Fig. 89 the roof appears quite extensive when viewed so that the end-walls of the structure are not seen. Such illusions find applications in the moving-picture studio where extensive interiors, great fortresses, and even villages must be erected within small areas. Incidentally the camera aids to create the illusion of magnitude in photographs because it usually magnifies perspective, thereby causing scenes to appear more extensive in the photographs than in the reality.

Fig. 88.—Some simple geometrical-optical illusions in architecture.

Balance in architecture is subject to illusions and might be considered an illusion itself. For example, our judgment of balance is based largely upon mechanical laws. A composition must appear to be stable; that is, a large component such as a tower must not be situated too far from what we take as a center of[Pg 202] gravity, to appear capable of tipping the remainder of the structure. In physics we would apply the term “moment.” Each mass may be multiplied by its distance from the center of gravity, thus determining its moment. For a building or other composition to appear stable the sum of these moments must be zero; that is, those tending to turn the figure in one direction must be counterbalanced by those tending to turn it in another direction. In appraising a composition, our intellect summates the effects of different parts somewhat in this manner and if satisfactory, balance is considered to have been attained. The colors of the various components exert an influence in this respect, so it is seen that illusions may have much to do with the satisfactoriness of architectural compositions.

Fig. 89.—By decreasing the exposed length of shingles toward the top a greater apparent expanse is obtained.

[Pg 203]Various illusions of height, of ceiling, composedness, etc., may be obtained by the color of the ceiling. A dark cornice in an interior may appear to be unsupported if the walls below are light in color, without any apparent vertical supports for the cornice. We are then subjected to the illusion of instability or incongruity. Dark beams of ceilings are not so obtrusive because our intellect tells us that they are supports passing over the top of the walls and are therefore able to support themselves. Color and brightness in such cases are very important.

The architectural details on exteriors evolved under daylighting outdoors so that their form has been determined by the shadows desired. The architect leads his lights and shadows around the building modeling it as he desires. An offset here and a depression there models the exterior in light and shade. The forms must be powerful enough to resist the obliterating effect of overcast skies but notwithstanding all precautions the expression of an exterior varies considerably with nature’s lighting. Indoors the architect has a powerful controllable medium in artificial light which he may draw upon for producing various expressions or moods in rooms. The effect of shadows is interesting when viewing some structures flood-lighted at night. In those cases where the light is directed upward there is a reversal of shadows which is sometimes very unsatisfactory.

It is interesting to experiment with various ornamental objects lighted from various directions. For example, a Corinthian capital lighted from below[Pg 204] may produce an unpleasant impression upon the observer. We do not like to have the dominant light from below, perhaps because it is annoying to the eyes. Possibly this is an instinct acquired by experience in snow-fields or on the desert, or it may be a heritage of ancestral experience gained under these glaring conditions. This dislike manifests itself when we appraise shadow-effects and therefore our final impression is tempered by it.

All sculptured objects depend for their appearance upon the lighting, and they are greatly influenced by it. In sculpture, in a strict sense, illusions play a lesser part than in other arts. Perhaps in those of very large proportions various corrections have been applied. A minor detail of interest is the small cavity in the eye, corresponding to a reversed cornea. This depression catches a shadow which gives considerable expression to the eye.

About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.

This book is part of the public domain. Matthew Luckiesh (2011). Visual Illusions: Their Causes, Characteristics and Applications. Urbana, Illinois: Project Gutenberg. Retrieved October 2022 https://www.gutenberg.org/cache/epub/36297/pg36297-images.html

This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.