VEATIC: Video-based Emotion and Affect Tracking in Context Dataset: Conclusion

Written by kinetograph | Published 2024/05/27
Tech Story Tags: veatic-dataset | human-affect-recognition | computer-vision | contextual-information | affect-inference | psychophysics | video-based-emotion | emotion-recognition

TLDRIn this paper, researchers introduce VEATIC dataset for human affect recognition, addressing limitations in existing datasets, enabling context-based inference.via the TL;DR App

Authors:

(1) Zhihang Ren, University of California, Berkeley and these authors contributed equally to this work (Email: peter.zhren@berkeley.edu);

(2) Jefferson Ortega, University of California, Berkeley and these authors contributed equally to this work (Email: jefferson_ortega@berkeley.edu);

(3) Yifan Wang, University of California, Berkeley and these authors contributed equally to this work (Email: wyf020803@berkeley.edu);

(4) Zhimin Chen, University of California, Berkeley (Email: zhimin@berkeley.edu);

(5) Yunhui Guo, University of Texas at Dallas (Email: yunhui.guo@utdallas.edu);

(6) Stella X. Yu, University of California, Berkeley and University of Michigan, Ann Arbor (Email: stellayu@umich.edu);

(7) David Whitney, University of California, Berkeley (Email: dwhitney@berkeley.edu).

Table of Links

6. Conclusion

In this study, we proposed the first context based large video dataset, VEATIC, for continuous valence and arousal prediction. Various visualizations show the diversity of our dataset and the consistency of our annotations. We also proposed a simple baseline algorithm to solve this challenge. Empirical results prove the effectiveness of our proposed method and the VEATIC dataset.

This paper is available on arxiv under CC 4.0 license.


Written by kinetograph | The Kinetograph's the 1st motion-picture camera. At Kinetograph.Tech, we cover cutting edge tech for video editing.
Published by HackerNoon on 2024/05/27