1,215 ukufunda
1,215 ukufunda

Yintoni i-Agents ye-AI engabonakali ekukhiqizeni (Njani ukwakhiwa kwi-Agents engabonakali)

nge Paolo Perrone6m2025/06/24
Read on Terminal Reader

Inde kakhulu; Ukufunda

Xa ukwakha i-AI agents, ndiya kwenza ingxaki elifanayo abantu abaninzi: Ndingathanda ukufumana i-demo emangalisayo kunokuba yenza into efanelekileyo ekukhiqizeni. Nazi isithombe se-5-step eyenza i-agent yakho ukusuka kwi-development hell ukuya kwi-scalable, i-production-ready system. Step 1: Master Python for Production AI. Step 2: Make Your Agent Stable and Reliable. Step 3: Go Deep on RAG. Step 4: Define a Robust Agent Architecture. Step 5: Monitor, Learn, and Improve in Production.
featured image - Yintoni i-Agents ye-AI engabonakali ekukhiqizeni (Njani ukwakhiwa kwi-Agents engabonakali)
Paolo Perrone HackerNoon profile picture
0-item

Xa uqala ukuvelisa i-AI agents, ndiye kwenza ingxaki elifanayo abantu abaninzi: Ndingathanda ukufumana i-demo emangalisayo kunokuba ukwakha into efanelekileyoKwakhonaUkusuka kwimveliso.


Ukusebenza kakuhle ekuqaleni. I-prototype iye yaba smart, ifumaneka ngokukhawuleza, kwaye usebenzisa i-open-source libraries ezininzi. Kodwa ngexesha lokufumana kwimeko yabasebenzisi esemgangathweni, izicwangciso zihlala.


I-Bugs ifumaneka kwiimeko ze-edge. I-Agent yandibana ne-reliability. I-Logging yenzelwe emva kokufunda. I-Scaling? Fumelele. Ndingathanda ukuba ndinokufunda inkqubo yokwenene – ndinokufunda umnxeba.


Emva kwemifundo embalwa embalwa (ngaphezulu kweeyunithi eyahlukileyo kwi-debugging i-spaghetti prompts), ngexesha lokugqibela ngexesha elifanelekileyo. A 5-step roadmap eyenza i-agent yakho kwi-development hell ukuya kwi-scalable, i-production-ready system.


Ukuba unomatshini we-solo okanye ukusetyenziswa kwe-AI kwi-scale ngaphakathi kwikhompyutha, le ndlela ndifuna ukuba umntu wabelane nam ngosuku lokuqala.

Image Credit Rakesh Gohel

Table Iinkcukacha

  • Isinyathelo 1: Master Python for Production AI
  • Isinyathelo 2: Yenza i-agent yakho ebonakalayo kunye nesithembiso
  • Isinyathelo 3: Go Deep on RAG
  • Isisombululo 4: Ukuqhathanisa i-Architecture ye-Agent Robust
  • Isisombululo se-5: Ukucacisa, ukufundisa kunye nokuphucula kwimveliso

Step 1: Master Python for Production AI

Isinyathelo 1: Master Python for Production AI

Ukuba utshintshe izakhiwo, yonke into eyahlukileyo emva koko. Phambi ukhangela kwi-agents okanye i-LLMs, kufuneka utshintshe iziseko ze-Python. Nazi yintoni oku kuthetha:

  • I-FastAPI: Yintoni i-agent yakho ibhalisele kwihlabathi. Yenza i-endpoints ezincinane, ezigqongileyo kunye ne-scalable ezifanelekileyo ezisetyenziswa.


  • I-Async Programming: I-Agents ihamba ngokuvamile kwi-API okanye i-databases. I-Async ibonelela ukwenza ngaphezulu, ngokukhawuleza, ngaphandle kokufaka.


  • Pydantic: Data going in and out of your agent must be predictable and validated. Pydantic gives you schemas that prevent half your future bugs.


Ukuba ezi zixhobo ziintsha ukuba, akukho umdla.


Here are some great resources to help you get up to speed:

  • I-Python FastAPI I-Crash Course
  • I-Async Programming Yenzelwe
  • dFastAPI Tutorial yokuzonwabisa
  • I-Tutorial ye-Pydantic

Ukukhangisa oku, kwaye unxibelelanisa iingxaki ze-duct-tapping. Nail it, kwaye uyakwazi ukuvelisa.

Step 2: Make Your Agent Stable and Reliable

Isinyathelo 2: Yenza i-agent yakho ebonakalayo kunye nesithembiso

Kule ngexesha, i-agent yakho ngokwenene "ukusebenza". Kodwa imveliso akufanele ukuba - akufanele ukuba iziphumo ziyafumaneka xa izinto ziyafumanekaNgabaUkusebenza


Ingaba ufuna izinto ezimbini apha:

  • I-Logging: Yinto i-X-ray vision yakho. Xa kukho into yokukhula (kuba kuya), i-logs iyasiza ukubona ngexabiso efanelekileyo kwaye ngoko ke.


  • Ukuvavanya: Izifundo ze-Unity zithintela iingxaki ze-dumb ngaphambi kokufumana i-prod. Izifundo ze-integration zibonisa ukuba izixhobo zakho, i-prompts, kunye ne-API zihlanganisa ngokufanelekileyo. Ukuba i-agent yakho ibandakanya ngexesha lokuguqulwa kwe-code, akukwazi ukuhambisa ngokufanelekileyo.


Yenza iindidi ezimbini kwindawo ngoku, okanye uthathe ixesha elibini emva kokuba ukuphawula i-chaos.


Ukuba unemibuzo malunga lokuqala, izixhobo zokusiza:

  • Intro ku-Python Logging
  • Indlela yokulungisa i-Unit Tests kwi-Python
  • Ukuhlanganiswa kwe-REST API nge-Python

Step 3: Go Deep on RAG

Isinyathelo 3: Go Deep on RAG

Iingcali ngaphandle kokufumana ulwazi olufanelekileyo zithembisa iimfashini ezaziwayo. I-RAG ibonise iingcali yakho kwinto engaphezulu - ibonelela kwi-memory, i-facts, kunye ne-context yehlabathi.


Zifumaneka kwi-Foundations:

  • Ukufumana i-RAG: Fumana yintoni, yintoni kuxhomekeke, kunye neendlela efanelekileyo kwi-system design yakho.


  • I-Text Embeddings + Vector Stores: Lezi zihlanganisa izakhiwo ze-recieval. Hlola iingcebiso zenzulululwazi, kwaye zihlanganisa ngokufanelekileyo.


  • I-PostgreSQL njenge-Alternative: Kwiimeko ezininzi zokusetyenziswa, ungenza i-DB ye-vector eyenziwe - isakhiwo se-Postgres esebenzayo kakuhle.


Emva kokuba uqhagamshelane izinto ezisemgangathweni, ixesha ukulungiselela:

  • I-Chunking Strategies: I-chunking ye-smart ibonelela kakhulu. I-Splits ye-naive ibonelela ukusebenza.


  • I-LangChain ye-RAG: I-framework ye-high-level yokufaka yonke into - i-chunk, i-query, i-LLM, kunye ne-response.


  • Izixhobo ze-Evaluation: Uyazi ukuba imibuzo yakho iyiphi na efanelekileyo. Ukunemba kunye ne-recall ayikho kwi-scale.


Iingcali ezininzi zeengcali zangaphantsi apha. Ayikho kwakhona.


Ukulungele ukuchitha ngakumbi?


Zonke iinkcukacha ziya kukuvumela:

  • Ukulungiselela RAG
  • Imibuzo yeTeksti
  • Database yeVector
  • Iinkqubo ze-chunking
  • I-RAG kunye neLangChain
  • RAG Ukucaciswa
  • I-Advanced RAG

Step 4: Define a Robust Agent Architecture

Isisombululo 4: Ukuqhathanisa i-Architecture ye-Agent Robust

I-agent enamandla ayinayo nje i-prompt - i-system epheleleyo. Ukwenza i-agent efanelekileyo kwimveliso, kufuneka i-structure, i-memory, kunye ne-control. Nazi indlela yokufumana:


  • I-Agent Frameworks (LangGraph): Hlola oku njengomzimba we-agent yakho. I-Agent ithatha i-state, i-transitions, i-retries, kunye ne-logic ye-hardcode.


  • I-Prompt Engineering: Izicelo ezininzi zihlanganisa. I-Prompts ezifanelekileyo zihlanganisa phakathi kweengxaki kunye neengxaki ezifanelekileyo. 👉 Prompt Engineering Guide
Umhlahlandlela oomatshini


  • I-SQLAlchemy + Alembic: Uya kufuneka i-database efanelekileyo - ngaphandle kokufunda kuphela, kodwa yokubhalisa, ukucaciswa, kunye ne-agent status. Ezi zixhobo zincedisa ukulawula i-migration, i-structure, kunye ne-persistence. 👉 Ukulawula i-database (SQLAlchemy + Alembic)
Ukulawula i-database (i-SQLAlchemy + Alembic)


Xa ziyafumaneka, ufumane i-agent ebonakalayo kuphelaUkusabela- Ukulungele, uqhagamshelane, kunye nokuphucula ngexesha elide.

Step 5: Monitor, Learn, and Improve in Production

Isisombululo se-5: Ukucacisa, ukufundisa kunye nokuphucula kwimveliso

Umzila wokugqibela yinto elidibanisa iiprojekthi ze-hobby kwiinkqubo ezifanelekileyo: ukunceda okuqhubekayo.


Xa u-agent yakho ivuliwe, ungenza - uqala nje.


  • I-Monitor Everything: Usebenzisa izixhobo ezifana neLangfuse okanye i-custom logs yakho ukucacisa into yokusebenza kwe-agent yakho, i-users akhawunti, kunye neengxaki.


  • Study User Behavior: Yonke ukuxhaswa yi-feedback. Thola iingxaki ze-friction, ukuxhaswa, kunye ne-failure modes.


  • I-Iterate Frequently: Usebenzisa iingcebiso zakho ukucacisa iingcebiso, ukulungiselela izixhobo kunye nokukhetha iingcebiso ezibalulekileyo.


Okokuqala, unxibelelanisa i-"set it and forget it" iingxowa. Iingxowa ezininzi ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye ziye zibe.👉 Usebenzisa i-Langfuse ukuhanjiswa, ukuhanjiswa, kunye nokuphucula kwi-wild.

Ukusebenzisa i-Langfuse ukuhanjiswa, ukuhanjiswa, kunye nokuphumelela kwihlabathi

The Bottom Line

I-Bottom Line

Uninzi weengcali ze-AI akukwazi ukufikelela kwi-prototype phase.


Zifumaneka kwi-dev hell - ezincinane, engabonakali, kwaye engabonakali ukugcina.


Kodwa kungekho kufuneka ukuba ngoko.


Ngokuhambisana ne-5-step roadmap - ukusuka ukufumana i-Python eyenziwe ekukhiqizeni kunye nokuvelisa iinkqubo ezininzi ze-testing, ukuya ekubeni ama-agents eziqhelekileyo ze-recovery, i-orchestration logic, kunye ne-real-world monitoring - unokufumaneka iimpazamo eziqhelekileyo ezinxulumene neentlobo ezininzi.


Ziziphi na iinkcukacha zokusebenza ezilungileyo kwi-cycle ye-development. Ziziphi na iinkcukacha zihlanganisa kwi-demo folder kunye nokuvelisa iinkqubo ezivula iinkcukacha ze-real, ukuxhaswa ngexesha elide, kunye nokufumana ukhuseleko lwabathengi.


Akukho kuphela ama-demo ezihambayo. Akukho kuphela amaqela ezihambayo kunye ne-duty tape. Kodwa iinkqubo ezifanelekileyo kunye ne-memory, i-reasoning, kunye ne-permanent power.


Yintoni i-agents yokukhiqiza ziyafumaneka.


Akukho ngempumelelo - kodwa ngempumelelo.


Ukuba uqhagamshelane nenkqubo yayo, uya kufumaneka kwi-curve - kwaye ama-agents yakho ziyafumaneka ixesha.


Nceda siphinde i-bar.


Ingaba ufuna ukufumana kwakhona?

Ingaba ufuna ukufumana kwakhona?

Qhagamshelana nathi kwi-LinkedIn!

Qhagamshelana nathi kwi-LinkedIn

Ngathiikhayaiingcebiso, iingcebiso kunye neengcebiso ezisetyenziselwa ukunceda iingcebiso ezininzi ezininzi kwaye ziyafumaneka kwihlabathi ye-AI. Nceda uqhagamshelane nathi:

Ingaba unomatshini we-tech ufuna ukwandisa ubudlelwane yakho nge-writing?

Ingaba unomatshini we-tech ufuna ukwandisa ubudlelwane yakho nge-writing?

Don’t miss my newsletter!

Ngaba ushiye i-newsletter yethu

iimvelisoTech Audience Acceleratorisetyenziswa ne-copywriting esebenzayo kunye ne-publishment-building strategies eyenza izigidi zeengcali ezizodwa kwaye zithembisa ukuvelisa.

L O A D I N G
. . . comments & more!

About Author

Paolo Perrone HackerNoon profile picture
Paolo Perrone@paoloap
No BS AI/ML Content | ML Engineer with a Plot Twist 🥷 40k+ Followers on LinkedIn

ZIJONGE IIMPAWU

ELI NQAKU LINIKEZELWE KU...

Trending Topics

blockchaincryptocurrencyhackernoon-top-storyprogrammingsoftware-developmenttechnologystartuphackernoon-booksBitcoinbooks