Na blog na na na na na na na na na na na na na na na na na na na na na na na na na na na na
Na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na ndingisa na ndingisa na ndingisa na ndingisa na ndingisa na ndingisa na ndingisa na ndingisa na ndingisa na ndingisa na ndingisa na ndingisa.
na na na na na na na na naPamba la Pamba la 100%na na na na na na na na na na
LELO
Kokolala
KokolalaNa na na na na na na na na na na na na na na na
Moto Ndege 14
Moto Ndege 14na na na na na na na na na na na na na na na na na na na na na na na na
Na minoko koleka lingomba na:
- Pamba la Pamba la Pamba la 100%
- Pamba la Pamba la Pamba la Pamba la Pamba la 100%
- Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la 100%
Miso
MisoNa na na na na na na na na na na na na na na na
Miso
Misona na na na na na na na na na na na na na na na na na na na na na na na
Miso
- Kofutela Postgres. Kofutela CocoIndex na Postgres ekomisa data lineage na ekomisa ekomisa.
- Posa Posa
ETENI YA 9
Penza Design
Diagram ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba:
- Kofutela faili ya tabaka ya tabaka
- Na na na na na na na na na na
- Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la 100%
1. Kofutela miso.
@cocoindex.flow_def(name="ImageObjectEmbedding")
def image_object_embedding_flow(flow_builder: cocoindex.FlowBuilder, data_scope: cocoindex.DataScope):
data_scope["images"] = flow_builder.add_source(
cocoindex.sources.LocalFile(path="img", included_patterns=["*.jpg", "*.jpeg", "*.png"], binary=True),
refresh_interval=datetime.timedelta(minutes=1) # Poll for changes every 1 minute
)
img_embeddings = data_scope.add_collector()
flow_builder.add_source
lingála (filename
Misocontent
[MOKO]MOKOLifePenza
2. Process kila imago na makolinhot ya info.
2.1 Kofutela image na CLIP
@functools.cache
def get_clip_model() -> tuple[CLIPModel, CLIPProcessor]:
model = CLIPModel.from_pretrained(CLIP_MODEL_NAME)
processor = CLIPProcessor.from_pretrained(CLIP_MODEL_NAME)
return model, processor
Miso@functools.cache
makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot makolinhot
@cocoindex.op.function(cache=True, behavior_version=1, gpu=True)
def embed_image(img_bytes: bytes) -> cocoindex.Vector[cocoindex.Float32, Literal[384]]:
"""
Convert image to embedding using CLIP model.
"""
model, processor = get_clip_model()
image = Image.open(io.BytesIO(img_bytes)).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
features = model.get_image_features(**inputs)
return features[0].tolist()
embed_image
na na na na na na na na na na na na na na na na na na na na na na
Pamba la Pamba la Pamba la 100%cache
paramètre. Kofutela ebele, ekomisi ya ekomisi ya ekomisi ya ekomisi ya ekomisi ya ekomisi ya ekomisi ya ekomisi ya ekomisi ya ekomisi ya ekomisi ya ekomisi ya ekomisi.MOKOLife.
Na na na na na na na na na na na na na na
with data_scope["images"].row() as img:
img["embedding"] = img["content"].transform(embed_image)
img_embeddings.collect(
id=cocoindex.GeneratedField.UUID,
filename=img["filename"],
embedding=img["embedding"],
)
2.3 Kokolala
Pamba la Pamba la Pamba la Pamba la Qdrant.
img_embeddings.export(
"img_embeddings",
cocoindex.storages.Qdrant(
collection_name="image_search",
grpc_url=QDRANT_GRPC_URL,
),
primary_key_fields=["id"],
setup_by_user=True,
)
3. Kofutela index
Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba.
def embed_query(text: str) -> list[float]:
model, processor = get_clip_model()
inputs = processor(text=[text], return_tensors="pt", padding=True)
with torch.no_grad():
features = model.get_text_features(**inputs)
return features[0].tolist()
Posa Posa/search
makolinhot
@app.get("/search")
def search(q: str = Query(..., description="Search query"), limit: int = Query(5, description="Number of results")):
# Get the embedding for the query
query_embedding = embed_query(q)
# Search in Qdrant
search_results = app.state.qdrant_client.search(
collection_name="image_search",
query_vector=("embedding", query_embedding),
limit=limit
)
Na na na na na na na na na na na na na nalimit
Miso
# Format results
out = []
for result in search_results:
out.append({
"filename": result.payload["filename"],
"score": result.score
})
return {"results": out}
Pamba la Pamba la Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100% ya Pamba la 100%.
Miso
Miso
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Serve images from the 'img' directory at /img
app.mount("/img", StaticFiles(directory="img"), name="img")
Na na na na na na na na na na na na na na na na na na
- Na na na na na na na na na na
- Pamba la Pamba la Pamba la Pamba la Pamba la 100%
- Na na na na na na na na na na na na
@app.on_event("startup")
def startup_event():
load_dotenv()
cocoindex.init()
# Initialize Qdrant client
app.state.qdrant_client = QdrantClient(
url=QDRANT_GRPC_URL,
prefer_grpc=True
)
app.state.live_updater = cocoindex.FlowLiveUpdater(image_object_embedding_flow)
app.state.live_updater.start()
Na na na na na na na na na na na na na na na na na na na
- pe-po-girl14
- cocoindex.init(): Kofutela framework ya CocoIndex, ekolala nzinga nzinga nzinga nzinga
- Qdrant Client Setup:
- Creates a new
QdrantClient
instance - Configures it to use the gRPC URL specified in environment variables
- Enables gRPC preference for better performance
- Stores the client in the FastAPI app state for access across requests
- Creates a new
- Live Updater Setup:
- Creates a
FlowLiveUpdater
instance for theimage_object_embedding_flow
- This enables real-time updates to the image search index
- Starts the live updater to begin monitoring for changes
- Creates a
Kofutela ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba ya ngomba.
Miso
na na na na naMiso. Tala na nzinga na nzinga na nzinga na nzinga na nzinga na nzinga.
Posa Posa
-
Create a collection in Qdrant
curl -X PUT 'http://localhost:6333/collections/image_search' \ -H 'Content-Type: application/json' \ -d '{ "vectors": { "embedding": { "size": 768, "distance": "Cosine" } } }'
-
Setup indexing flow
cocoindex setup main.py
It is setup with a live updater, so you can add new files to the folder and it will be indexed within a minute.
-
Run backend
uvicorn main:app --reload --host 0.0.0.0 --port 8000
-
Run frontend
cd frontend npm install npm run dev
Misohttp://localhost:5174Miso
Na na na na naimg
makolinhotmakolinhotPamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la Pamba la
Na na na na na na na na na na na na na na nacocoindex server -ci main.py
.
Finally - we are constantly improving, and more features and examples are coming soon. If you love this article, please give us a star ⭐ at GitHub to help us grow. Thanks for reading!
Penza